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THEORY OF NOISE GENERATION FROM MOVING BODIES 

WITH AN APPLICATION TO HELICOPTER ROTORS 

F. Farassat 
The George Washington University 

Joint Institute for Acoustics and Flight Sciences 

SUMMARY 

In this report, several formulations for the determination of the acoustic field of 
bodies of arbitrary shape and motion are presented. The analysis is based on the Ffowcs 
Williams-Hawkings equation which is rederived by an embedding procedure and is given 
in the appendix. The required parameters are the body geometry, time history of. motion 
and its surface pressure distribution. Based on criteria proposed in the report, one of 
these formulations which consists of an observer time derivative and integrals over the 
curve of intersection of a collapsing sphere and the body, is singled out for numerical cal- 
culation of acoustic pressure signature. Compact or noncompact source distributions on 
a moving body are defined in terms of the time scale of fluctuations of the sources and the 
length scale of a virtual radiating surface whose geometry depends on the body shape and 
motion. A new expression is derived for the computation of the acoustic pressure signa- 
ture of rotating blades. This expression is not restricted by compactness or far-field 
assumptions. A careful study of singularities of the various forms of the solution is 
undertaken and the nature of these singularities is explained. Some examples of thickness 
noise of helicopter rotors in hover and forward flight are worked out. These examples 
suggest strongly that high-speed blade slap of rotors is mainly the thickness noise 
phenomenon. 

INTRODUCTION 

The generation of sound from moving bodies, such as a rotating propeller or heli- 
copter rotor blades, is an undesirable byproduct of many useful machines. The estimation 
of the sound field produced by the motion of such bodies is, therefore, essential in design- 
ing quiet machines. The theory for estimation of this sound has been developing gradually 
in recent years. Generally, one is concerned with the motion of a slender body such as a 
fan or a propeller blade with a rather complicated flow pattern around it. The pressure 
disturbance of the fluid medium caused by the motion of the body is felt as sound when the 



disturbance passes over any observer in the medium. However, without proper approxi- 
mations, one is faced with a difficult theoretical problem in calculating the acoustic 
pressure. 

An important approximation is introduced by assuming that the body does not disturb 
the medium appreciably and thus the nonlinearities may have negligible effects. The gov- 
erning equation for the acoustic pressure is then a wave equation with some inhomogene- 
ous source terms depending on the net local force of the body on the fluid and the normal 
velocity of the surface of the body. Historically, the effects of these two terms were 
studied separately. 

Gutin (ref. 1) was first to calculate the sound from static propellers. He employed 
a result derived by Lamb (ref. 2) for the acoustic field of a stationary concentrated force. 
Because of the periodicity of the propeller forces, one is able to replace them by stationary 
and harmonically oscillating forces which are distributed on the propeller plane. Gutin 
applied Lamb’s result to these forces. For harmonic analysis the governing wave equa- 
tion was converted into the Helmholtz equation whose solution gave the acoustic pressure 
spectrum. 

Garrick and Watkins (ref. 3) removed Gutin’s restriction of static propellers by 
first studying the acoustic field of a concentrated force in uniform rectilinear motion. 
The observer is in the frame fixed to the source. In the nonrotating frame moving with 
the propeller, the analysis of Gutin was repeated and the acoustic pressure spectrum was 
obtained. 

Deming (ref. 4) studied the effect of the source term involving the normal velocity 
distribution of the body surface for static propellers. He utilized Rayleigh’s relation for 
the piston radiation into a semi-infinite space and obtained the acoustic pressure spectrum. 
This noise is referred to as the thickness noise. Arnoldi (ref. 5) extended Deming’s work 
to propellers in uniform axial motion. Lyon (ref. 6) has studied the thickness noise of 
helicopter rotors in forward flight. 

One of the common assumptions in treating the problem of acoustic radiation is the 
compactness of the sources. A stationary source is compact if its dimension is much 
smaller than the wave length of radiation. This definition needs to be modified for moving 
sources. Effectively a compact source may be treated as a point source and considerable 
simplification is introduced in the acoustic analysis (ref. 7). Even the forward flight 
effects of helicopter rotors may be studied numerically rather easily in this case (ref. 8). 

It is the main purpose of this report to develop a theory for the calculation of the 
acoustic pressure signature for bodies in arbitrary motion in the ground-fixed coordinate 
system where the observer is not limited to the far field and no compactness assumption 
is made. The starting point of the present analysis is the equation developed by Ffowcs 
Williams and Hawkings, denoted the FW-H equation, using the acoustic analogy (ref. 9). 
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With a view toward application to helicopter rotors and propellers, the second-order 
source term which depends on Lighthill’s stress tensor is neglected. The resulting equa- 
tion is valid in the entire unbounded space and contains source terms which involve Dirac 
delta functions. These terms indeed come from the boundary conditions of the problem. 
One may then solve the FW-H equation by using the Green’s function for the unbounded 
space. 

An interesting fact about the FW-H equation is that it is possible to obtain many dif- 
ferent forms of the solution (ref. 9). All these forms have some type of singularities for 
bodies moving at high speeds. In this report several forms of the solution of the FW-H 
equation are presented. The criteria which are proposed later will be applied to single 
out one form for the computation of the acoustic pressure signature. The distinction be- 
tween the compact and noncompact source models for moving bodies is discussed in some 
detail. In many situations of interest, one cannot assume that the sources that generate 
the sound are compact. 

A new expression for the determination of the acoustic field of high-speed helicopter 
rotors and propellers is derived and presented here. The part of this expression called 
the thickness noise is used for some trend calculations in the case of helicopter rotors, 
These calculations indicate that the thickness noise may be the mechanism of high-speed 
blade slap of helicopters. Some comparison with experiments is given to support this 
proposition. 

The mathematical derivation and notes presented in the appendix are supplementary 
to the main body of the report. The technique of embedding a problem with a restricted 
domain into a problem with unbounded domain is discussed first. This technique is em- 
ployed to derive the FW-H equation. The different forms of the solution of the FW-H 
equation are obtained and their relation to each other is explained in the appendix. A 
special emphasis is put on the problem of singularities in the solution of the FW-H equa- 
tion. The nature of these singularities is also discussed in the appendix. 

SYMBOLS 

C speed of sound 

D see equation (30) 

DP disk plane of helicopter rotor on propeller 

Eij viscous stress tensor 
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F(F; x’,t) = f(f,t-r/c) = 0 equation of C -surface 

fl ) arbitrary function 

f(F, 7) = 0 equation of surface of body 

G(x,5),~(x,t) Green’s functions 

g 

H( ) 

h( 1 

h(Vi,$) 

L(Q) 

1 

Mn 

Mr 

Mt 

= 7 - t + r/c 

Heaviside function 

arbitrary function 

camber surface of blade in 5j’-frame 

length scale of E-surface for a fixed observer position x’ and time 

length scale of the body 

Mach number based on velocity normal to body, v,/c 

Mach number based on velocity in radiation direction, vr/c 

tip Mach number 

m-curves system of curves on C-surface orthogonal to I? -curves 

Ni 

ni 

pij 

P,P l,P2 

PT 

4 

unit outward normal to C-surface 

unit outward normal to body 

compressive stress tensor 

pressure, acoustic pressure 

pressure distribution on body due to thickness 

t 



Q(F,T),Qi(F,T) Source distribution functions 

v-1 

ret 

A 
‘i 

C! 1 

rmin 

r0 

S 

S* 

t 

tp9tv 

ui 

un 

vi 

net force of body on fluid 

distance between source point and observer 

subscript denoting retarded time 

unit vector in radiation direction 

7 components of unit vector r in ij’ -frame 

minimum distance from observer to C -surface 

see figure A2 

surface of body f(y’,T) = 0 

part of body surface whose sources contribute to acoustic pressure at position 
x’ and observer time t 

Lighthill stress tensor 

arbitrary bounded function 

thickness distribution function of blade in T’ -frame 

observer time 

time scales of pressure fluctuations and variation of speed of body 

fluid. velocity 

fluid velocity normal to the body 

vehicle velocity 
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Vi component of vehicle velocity V in ?j’ -frame 

-1 
Vl 

Ivg 

vi 

= -Vi + Tlhs2 

= -Vi - TjiS-2 

velocity of body 

velocity of a point of the body f(F, 7) = 0 in Lagrangian coordinates 

vn 

vr 

xi 

component of velocity normal to body surface, a . ii 

component of velocity of body surface in radiation direction, v’ . F 

observer position vector 

T-frame Cartesian coordinate system fixed to the undisturbed medium 

yi source position vector 

r 

AP 

a ) 

6ij 

3 

G-5’ 

8 

curve of intersection of body and sphere g = 0 

pressure distribution on rotor blade due to lift 

Dirac delta function 

Kronecker delta 

Lagrangian coordinate of a point on the body 

Cartesian coordinate frames 

angle between ni and ci 

eh 

6 

angle between Ni and the radiation direction ?i 

angle between normal to camber surface and gi 



l/2 
= ( 1 + Mn2 - 2Mn COS 6) 

density 

density of undisturbed medium 

=p-P, 

surface generated by F(F; x’,t) = 0 

source times 

emission time of source 

time spent for sphere g = 0 to cross body for fixed observer position x’ 
and observer time t 

see figure A2 

angle between vi- and VI-axes 

~(x’,t),~l(~,t),~2(~,t) unknown functions in wave equations (see appendix) 

i-2 angular velocity of rotor 

q 2 1 a2 ,2 wave operator, - - - 
c2 aT2 

V2 Laplacian operator, a2 a2 a2 - + - + - 
aY12 aY22 aY32 

Subscripts 1, 2, and 3 are used to denote components of a vector or partial deriva- 
tives along the corresponding axis. 

Vectors are also denoted by an arrow over the symbol. 

Summation convention on subscripts i,j is used throughout this report. 
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The element of the volume in each reference frame is written in terms of the differ- 
ential of the symbol used to designate the frame (i.e., d? is the element of volume in the 
F-frame). 

THEORETICAL FORMULATION 

General Discussion 

For a body in motion, whose surface is described as f(F,T) = 0, the governing equa- 
tion for the determination of the acoustic pressure p is the Ffowcs Williams-Hawkings 
(FW-H) equation (ref. 9): 

q 2p = ,2 ,,2 ’ a2p - V2p = #-[poVnlVfl 6(fl - 2- P’* x 6(f) + 2 
aYi[ lJ aYj ] 

The summation convention on subscripts i and j is used here. The derivation of this 
equation is based on the acoustic analogy and it is, therefore, valid in the entire unbounded 
space. The F-frame in which equation (1) holds is fixed with respect to the undisturbed 
medium. The above equation is derived in the appendix. 

Equation (1) is the generalization of the equation derived by Lighthill (ref. 10) in 
connection with his jet noise theory. The first two inhomogeneous source terms in equa- 
tion (1) are absent in Lighthill’s theory and the contribution from the remaining term 
a2Tij I aY iaYj is the so-called quadrupole noise due to turbulence. The first term in the 
above equation arises as a result of the motion of the surface in the normal direction. 
Each surface element can be viewed as a small piston acting on the fluid with speed v,. 
The second term comes from the local surface stress Pij which consists of viscous 
stress Eij and the thermodynamic pressure p. Physically, this term is the contribu- 
tion of the net force acting on the fluid due to the viscous stress and the pressure distribu- 
tion on the body surface. 

It is assumed that the flow parameters on the moving surface are known. These 
parameters are obtained experimentally or by aerodynamic calculations. Obviously, this 
assumption simplifies the acoustic analysis considerably. As in the case of jet noise the- 
ory, not all the features of the acoustic field are expected to be exhibited by the present 
formulation. This is because of the fact that in the situations of interest, the flow around 
the body is quite complex and the required flow parameters could be specified to a limited 
degree. Despite this shortcoming, the acoustic analogy appears as one of the most useful 
methods for the study of the noise from bodies in motion. 
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Formulation 

Since in the cases of interest, one is concerned with the motion of a slender body 
such as a rotor or fan blade, the region of turbulent flow is small and of relatively low in- 
tensity. Therefore, the term involving Tij in equation (1) will be neglected. It is well 
known that turbulence is a very inefficient noise producing mechanism (ref. 10). This is 
yet another reason to neglect the last term of equation (1) which is a volume source. Tur- 
bulence has another effect on the acoustic field by producing fluctuating pressure on the 
body surface which is taken care of analytically through the second term in equation (1). 
The viscosity effect will also be neglected. Under the above assumptions, the governing 
equation for the generation of the sound for moving bodies is: 

L12P = &[PovnlVfl 6(ffl - &[PnilVfl 6(f)] 

Here, ii is the unit outward normal to the body. The pressure on the right side of the 
equality is the surface pressure. In the solution of this equation, the geometry and the 
time history of the motion of the body will be assumed known. By the nature of the acous- 
tic analogy, the surface pressure distribution is a given parameter of the problem. 

Solution of Governing Equation 

In view of the fact that it is possible to get numerous forms of the solution of the 
FW-H equation, some criteria for the selection of a suitable form for the computational 
work are needed. The following criteria are therefore proposed: 

(a) The solution should require as little information as possible about the source 
distribution on the surface of the body. 

(b) The singularities in the solution should be integrable. 

(c) The computation time should be as low as feasible. 

The solution of equation (2) is p = p1 + p2 where p1 and p2 are the solutions 
of the following equations : 

q l2Pl = &[PoVnIVf/ 6(f)] 

cl2P2 = -$-[Pnilvfl s(fjl 

(3) 

(4) 
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These equations are of the types discussed in the appendix (eqs. (A31) and (A32), respec- 
tively). In the following paragraphs the solutions of equations (3) and (4) are written with 
the above criteria in mind. 

Consider the surface F(F; z,t) = f(F,t-r/c) = 0. Here, x’ and t are the observer 
position and time, respectively. These two parameters are kept fixed in the following dis- 
cussion. It is shown in the appendix that the surface F = 0, denoted by E, serves as a 
virtual radiating surface for the body f(F,T) = 0 which is in motion. The Z-surface is 
the locus of the points on the body whose signals arrive simultaneously to the observer at 
time t. This surface is generated by the curves of the intersection of the body and the 
collapsing sphere g = T - t + r/c = 0 for --co < T 5 t. These curves of intersection are 
called the r-curves here. The collapsing sphere in the process of crossing a two-bladed 
rotor system is shown in figure 1. (See also fig. (Al).) In terms of the C-surface, the 
solution of equation (3), using equation (A34) with Q(~,T) = povn, is 

477 Pi(Q) = + 
s,.o $??)ret dC (5) 

The symbol A is used for ( 1 + Mn2 - 2Mn COS 6) 
l/2 

where Mn = vn/C and 8 is the 
angle between n’ and 7 (=x’ - 7, 7 is the source position). The subscript ret 
stands for retarded time. The singularities in the integrand of equation (5), which appear 
when A = 0, are shown to be integrable in the appendix. The reason for keeping the time 
derivative outside the integral rather than using the result similar to equation (A44) is 
twofold. First, the order of singularity in the integrand is increased when the derivative 
is taken inside the integral. Second, as seen from equation (A44), one is required to cal- 
culate more parameters on the Z-surface than those needed in equation (5). Also, when 
equation (A44) is expanded by performing the differentiations in the integrand, the result 
is a very long and complicated expression which does not seem to be useful for numerical 
computation. 

For equation (4), the solution equivalent to equation (A46) with Qi(F,T) = pni, is 

ys “),,, m + IF=0 $f Cl’ “),,, d’ (6) 

In the discussion following equation (A46), the reason for preferring this form of solution 
to those involving space derivatives, such as equation (A36), is stated. The remarks con- 
cerning equation (5) apply equally here. 
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The solution of equation (2), from equations (5) and (6), is 

477 P(Q) = 4T(P1 + P2) = + i 
cos e 

)reta+!F=O$jPc;se)retdB (7) 

Although the C-surface is defined analytically by F(F; x’,t) = f(F,t-r/c) = 0, in gen- 
eral the above equation cannot be integrated in closed form even if the surface pressure 
p is known analytically. This is because of the implicit representation of the C-surface 
which may have a complicated geometrical shape in the situations of interest. (See, for 
instance, figs. A3 and A5.) Because of this difficulty one needs to introduce a change of 
variables of integration to get other forms of the solution. However, one must be aware 
of the additional singularities introduced in the solution by such transformations. When 
the relation of equation (A68) is employed, the following equivalent forms of equation (7) 
are obtained: 

47r p(Q) = $ IT2 1 
71 r 

dr dT + 
cp cot 0 

dr dT 
r2 

(8) 

.* dS + S,, (rii rTir,)T* dS 

As described earlier, I’ in equation (8) is the curve of intersection of the collaps- 
ing sphere g = T - t + r/c = 0 and the body ~(F,T) = 0. This sphere enters and leaves 
the body at the source times 71 and 72. If, for a fixed x’ and t, the collapsing 
sphere enters and leaves the body more than once, then the integration in equation (8) is 
carried out over all the periods for which the intersection occurs. 

Equation (9) applies to rigid bodies only. The time T* is the emission time of the 
sources on the element of surface area dS of the body. The region of the body surface 
which contributes to the acoustic pressure at x’ and at the time t is denoted by S*. If 
all the points on the body surface move at speeds less than the speed of sound c, then S* 
is the entire surface of the body. Otherwise, one has S* = S*(X’,t). In the preceding equa- 
tion, Mr is defined as vr/C where vr = v’ .i and v’ is the local velocity of the body 
surface. The time derivatives in equations (7), (8), and (9) should be taken numerically in 
the applications. 

For the application of equation (8), one needs to construct the F-curves. This is, 
however, relatively simple. At any source time ~1, one starts with the largest sphere 
with its center at the observer position x’ which touches the body. Let the radius of this 
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sphere shrink at the speed of sound. The body should continue its motion. The intersec- 

tion of the sphere and the body forms the I-Curves. The sphere is allowed to collapse 

until it leaves the body completely at the time 72. The observer time corresponding to 

this sweep is t = ~1 + rl/c where rI is the radius of the sphere at the source time 
TV. One must make sure that the sphere does not intersect the body prior to 71 and 
after 72. This may be figured by knowing the time history of the motion of the body. 
Otherwise, the contribution of further intersections to the integrals in equation (8) must 
be included in the calculation of the acoustic pressure. The singularities of equation (8) 
are discussed in the appendix. They are integrable and could be dealt with in numerical 
work. 

If a Lagrangian coordinate system 3 is introduced for the points on the body, the 
following transformation rule exists between the jr- and y-frames: 

Here it is assumed that the two frames coincide at 7 = 0. The velocity of a point on the 
body with coordinate 3 and at the time T is ~‘(F,T). The emission time T* is the 
solution or the solutions of the equation 

g 
=T 

* 

C 

for fixed z, t, and y. In practice, this equation is transcendental and rarely can a 
simple analytic solution be obtained. However, the above equation can.usually be solved 
numerically by an iteration technique. It must be mentioned that, formally, one may write 

T* = t _ (z - XT*)1 = t _ 
C C 

r(r,T*;z) 

Because of this relation, it is customary to use the retarded time notation for formulas 
with integrals over the body surface. Such a notation could lead to confusion when taking 
a derivative inside an integral. For this reason, to convert the space derivatives in equa- 
tion (A36) to a time derivative, the C-surface solution is used in the appendix even if the 
solution consisting of an integral over the body surface could also be employed. In the 
latter case the conversion is not as straight forward as that based on the C-surface 
solution. 

For numerical calculations based on equation (9), the body surface S is first 
divided into a number of small elements. For each element, equation (11) should be em- 
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ployed to evaluate the corresponding source time T* (keeping x’ and t fixed) at an 
appropriate point on this element. However, because T* needs to be calculated a large 
number of times for each t, the use of equation (9) may require an excessive amount of 
computation time. The problem of the singularities of this equation is not easy to handle 
in numerical work. 

Going back to the criteria proposed earlier in this section, it is seen that the most 
suitable form of the solution of the FW-H equation, equation (2), for computational pur- 
poses is given by equation (8). This solution satisfies criterion (a) by requiring only the 
surface pressure and not the pressure gradient. The choice of I7 and T as the vari- 
ables of integration is to satisfy the criteria (b) and (c). Also only the observer time de- 
rivative and not the derivatives with respect to xi (such as in eqs. (A35) and (A36)) 
appears in equation (8). This reduces the computation time and thus favorably affects 
criterion (c). 

Compact and Noncompact Sources 

The terms compact and noncompact sources are used very frequently in acoustics. 
The purpose of this section is to bring out more clearly the distinction between compact 
and noncompact sources on moving bodies. Using the C-surface solution, one can define 
these terms precisely. 

To be specific, the following equation will be considered: 

q 2P = -&YPnilVfl 6(f)] (12) 

This equation is similar to equation (A32) with Qi(F,T) = -pni [Vf 1 s(f). The solution given 
by equation (A36) is 

4a p(Z,t) = -a axi s&=0 %?),,t dC 

After using the relation of equation (A68), one obtains 

4n p(Z,t) = 
-& IBody G/lpniMr\),, dS 

(13) 

(14) 

where T* is the solution of equation (11) for points on the surface S of the body. 

For a fixed observer position x’ and time t, let the C-surface have the largest 
dimension L(z,t) and let the time that the sphere g = 0 takes to cross the entire body 

13 
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be T&,t). If the time scale tp of the pressure variation on the surface S and the 
time scale tv of the variation of speed of the body are much greater than r&,t) and 
if the shortest distance from the observer to the C-surface rmin is much greater than 
L(x’,t), then equation (14) can be approximated as follows: 

47r p(x’,t) = -a 1 

axi k/l - Mr1)7t s (pni).* dS = 
S 

(15) 

where a is the net force on the medium due to the pressure on the surface S and ?* 
is the mean source time which is obtained by solving 

-r* -t+ Iz - &(?*)I o = 
C 

Here the mean location of the body is given by FB(T*). It is obvious that, effectively, the 
body is treated as a point source and in fact equation (15) is the solution of 

q 2P = -Y& @i(T) ‘[? - TB(T)l) 

which is what Lowson solved and published in 1965 (ref. 7). 

It is seen that the crucial assumptions in treating the body as a point source are 

Tp ” T&t) 1 
TV >> TC(z,t) 

1 

(17) 

(18) 

rmin >> J L(Z,t) 

Under these conditions, the source distribution is called compact. Otherwise, it is called 
noncompact. These conditions are dependent on observer time and position. Therefore, 
if an observer time interval is considered, all the above conditions should hold for this 
interval. Because of the dependence on observer position, the term “compact source dis- 
tribution” is misleading since compactness is not a characteristic of the source distribu- 
tion per se. For low subsonic speeds of the body, the length scale L(x’,t) and the typical 
length of the body 2 are of the same order of magnitude so that the third condition of 
equation (18) cm be replaced by rmin >> 2. 
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The most important fact about compact source representation is that one is able to 
relate the acoustic field to global parameters of the motion of the body such as the net 
force i$ of the body on the fluid or in the case of thickness noise to net rate of mass in- 
jection. However, in the case where the source distribution is noncompact, the local pres- 
sure on the C-surface at the source time T (=t - r/c) and not the net force on the body 
at the time T contributes to the acoustic pressure at the observer. 

For rotating bodies, even at moderate tip speeds, some of the conditions of equa- 
tions (18) could not be satisfied for the observer in or close to the plane of rotation. This 
may explain the poor agreement of the compact source theories with experiments so far. 

APPLICATION TO HIGH-SPEED PROPELLERS AND HELICOPTER ROTORS 

Specialization of General Equation 

The solution of equation (2) is used here to derive a useful expression for high-speed 
propellers and helicopter rotors. The particular solution employed is equation (8). The 
main assumption here is that the intersection of the collapsing sphere g = 0 with the 
blade can be approximated by the curve of intersection of g = 0 with the disk plane. Be- 
cause of this approximation, it is suggested that the observer be located in the region be- 
tween 450 above or below the plane of rotation during the period when g = 0 crosses the 
system. This is the region where the noncompact source formulation should be used so 
that this requirement does not affect the usefulness of the results. The observer position 
is otherwise arbitrary. It can be in either the near or the far field. 

A single blade is considered first. Three coordinate systems are used as shown in 
figure 2. The first which is called the F’-frame is fixed to the blade such that the qiq2- 
plane coincides with the plane of rotation. The 772~axis is along the span and the qi-axis 
is parallel to the chord of the blade. The origin of this frame is at the rotation center. 
The second system is the T-frame with its origin at the same location as the TV-frame 
but is nonrotating. The nlq2-plane coincides with the disk plane. The axes of this frame 
are parallel to those of the third system, the F-frame, which is fixed to the undisturbed 
medium. The position vector of the origin of the q-frame and the F’-frame is F(T) and 
the angle between the vi-axis and the q-axis is $. In the following discussion, the com- 
ponents of any vector in the ?j’-frame are primed for distinction. The vehicle speed with 
respect to the T-frame which is dF/dT is denoted by T. 

The coordinate transformations between the preceding frames are 

(19) 
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vi = v1 cos $ + 72 sin $ 

rli = -ql sin Q + 772 cos $ 

77b = rl3 I 

TJi = (Yl - -51) cos 4 + (Y2 - 52) sin 4 

vi = 
I 

-(yl - 51) sin GJ + (172 - 52) cos @ 

(20) 

(21) 

Let rib = h(qi,Vi) and ~5 = T(Vi,Vb) be the equations of the camber surface and 
the thickness distribution, respectively. The equation of the surface of the blade in the 
ij’-frame is T(Fj’) = 0 where 

(22) 

Here the abbreviations US and LS stand for the upper surface and the lower surface of the 
blade, respectively. The preceding equations are written in such a way that y(Yj’) < 0 
inside the blade and F(?j’) > 0 outside the blade. The equation of the blade surface in the 
y-frame is 

f @,T) = $‘(s;,T,l = 0 (23) 

where T'(~,T) is given by equations (21). 

The normal velocity vn of the blade surface is found from the relation 

-af/aT 

vn =w 

16 
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From equation (23) one can obtain the following results: 

af= 
(Tl + hl)(Vi - ?$a) + (7’2 + hZ)(Vi + via) - Vi 

aT 

! 
(25) 

(Tl - hl)(Vi - ~$a) + (‘I’2 - h2)(Vi + via) + Vi 

1 + (Tl + h1)2 + (T2 + h2)2 

JVf12 = 
1 + (Tl - h1)2 + (T2 - h2)2 

(26) 

where (Vi, Vi, Vi) are the components of the vehicle velocity V in the 5j’-frame, Q is 
the angular velocity of the blade system, and the subscripts 1 and 2 on the functions T 
and h designate partial derivatives with respect to vi and ~2, respectively. Since 
the blade may be considered a slender body, one can assume that 

lhll << 1 lhal << 1 IT21 << l 

I I T1 <cl (Except near leading edge) 
(27) 

For this reason, one obtains 

Id2 = 1 + T12 

over the upper and lower surfaces of the blade. 

Equation (23) also may be employed to obtain the relation 

-(Tl + hl)?(l - (T2 + h2)?2 + $3 

VfG= (Vflcose= 

( -(Tl - hl)r(l - (T2 - h2)?2 - r3 

where (‘i,ri,r$ ‘are the components of the unit radiation vector T 
Combining the preceding equation and equations (27) and (28) yields 

lVf12 sin2 0 = 1 - ??j2 + T12 (1 - ri2 > = D2 

(28) 

(US) 
1 

(29) (LS) 
in the 7’ -frame. 

(30) 
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Equation (8) will be rewritten as follows: 

a 4n p(Z,t) = z 
T2 

s s 
P ocvn dFdT+& 

T2 
s s 

p cot 8 
Tl r r sin 0 

dF dr + 
T2 ‘P ‘Ot e dr dT 

Tl r r s s 71 r r2 

(31) 

For the term involving Vn, which is in fact the solution of equation (3), equations (24), 
(25), and (30) give 

drdT=!&& T2 
s s 23T at 71 

TIVi + T2V2 dr dT 

r(DP) rD (32) 

where Vi and V2 are given by the following relations: 

Vi = -Vi + 772S-Z 

i 

The abbreviation DP stands for the disk plane of the helicopter rotor or propeller. 

For the terms which involve p on the right side of equation (31), consider the 
following integral : 

I= T2 
s s 

’ Cot ’ dr dT 
Tl r r 

When equations (29) and (30) are used, one obtains 

I= r2 
s s 

(PU - PL) (-hlri - h2r2 + r3) dr dT 

71 r(Dp) rD 

72 -1 s (PU + PL) (Tlri + T2i’2) dr dT 

71 r(DP) rD 

(33) 

(34) 

(35) 

where the subscripts U and L stand for the upper and lower surfaces of the blade, re- 
spectively. Using the notation Ap = p L - pu and PT = (pu + pL)/2, equation (35) is 
written as 

18 



I T2 =- 
s s 

Ap COS eh 
dF dT - 2 

PT(Tlr’, + T2r2) 
dF d?- 

T1 r (DP) rD rD (36) 

where 6h is the angle between the normal to the camber surface (pointing into the region 
$j > 0) and the radiation direction. In equation (36), the parameters Ap and PT are 
pressure distribution due to lift and thickness, respectively. Since, in the situation of in- 
terest, these two parameters are of the same order of magnitude, the two integrals in 
equation (36) are of the same order of magnitude if the observer is in or very near the 
qIq2-plane when the sphere g = 0 crosses the blade. Directly above and below this 
plane, the first integral in equation (36) dominates. 

The contribution from the terms containing pressure on the right side of equa- 
tion (31) is, therefore, 

T2 
s s 

Ap cos oh + ZpT(Tli’i + T2i.2) 
dr dT 

71 r(DP) 47rrD 

72 
s s 

Ap cos oh + 2pT(Tlri + T2i.2) 
-C dr dT 

71 r(DP) 4nr2D 
(37) 

This is in fact the solution of equation (4). For several blades the acoustic pressure from 
each blade must be added linearly in equations (32) and (37). Essentially a similar result 
consisting of partial derivatives with respect to observer position rather than time t was 
obtained and reported in reference 11. 

The contribution to the acoustic pressure denoted by pl(?,t) will be called the 
thickness noise although for a blade with zero lift, Ap = 0, the acoustic pressure has a 
nonzero contribution from p2 since PT f 0 on the blade. This definition is consistent 
with what has been called the thickness noise in the literature. (See refs. 4, 5, and 12.) 

There is some evidence (ref. 6) that in or close to the q1q2-plane, the plane of rota- 
tion, the contribution of thickness noise p1 is greater than p2 at high tip speeds. This 
fact and the fact that the calculation of p1 only requires knowledge of blade geometry and 
kinematics led to the development of a computer program to calculate the thickness noise 
(ref. 14). At present, the lack of sufficient information about the surface pressure distri- 
bution on rotating blade systems prevents a reliable calculation of p2. However, the out- 
put of the thickness noise program and a comparison with experimental results may be 
employed to find under what conditions the acoustic pressure p can be approximated by 

Pl. 
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Thickness Noise of Helicopter Rotors 

To study the thickness noise of high-speed helicopter rotors, equation (32) was used 
to develop a computer program for a rotor system with rectangular blades and a uniform 
airfoil section along the span. The program and the user’s guide are presented in 
reference 14. 

In this program, the I-curves are approximated by the arcs of intersection of the 
collapsing sphere g = 0 and the disk plane which is in the qIq2-plane. The double inte- 
gral of equation (32) is approximated by a finite difference technique with a smaller mesh 
size near the leading edge of the blade. The derivative with respect to the observer time 
is taken numerically after the result of the integration is smoothed to reduce enlargement 
of errors. As expected, due to the construction of many I-curves for each observer time, 
the computation time is very long. A special effort should be made to design an efficient 
algorithm for the computation of noise from noncompact source distributions. 

The computer program was used to investigate the relation between thickness noise 
and high-speed blade slap of helicopter rotors. The particular features of blade slap of 
concern here are 

(a) Impulsive acoustic pressure signature 

(b) Strong dependence of sound intensity on tip Mach number 

(c) Directionality in the plane of rotation 

The following numerical examples are presented to point out that thickness noise 
indeed exhibits all the above characteristics of high-speed blade slap. The rotor system 
for figures 3 to 5 has two blades with biconvex parabolic arc airfoil sections. The rotor 
diameter is 10 m and the blade chord is 0.4 m. The thickness ratio of each blade is 
10 percent. The observer is in the rotation plane 50 m from the center of rotation. For 
figures 6 and 7 the rotor parameters are those of a test helicopter. The two-bladed rotor 
diameter is 13.42 m and the blade chord is 0.68 m. The thickness ratio of the blades is 
9.3 percent. The rotor speed is 324 rpm. The helicopter is at an altitude of 15 m and the 
observer is 80 m ahead of the helicopter. 

Figure 3 shows the theoretical variation of the acoustic pressure signature of a 
hovering helicopter as the tip speed is increased. The observer is in the plane of rotation. 
As the tip Mach number is increased, one sees a steepening of the signature, becoming im- 
pulsive above Mt = 0.6. The shape of the acoustic pressure signature changes at and 
above sonic tip speed with the new shape having two positive peaks and a negative peak of 
approximately equal magnitude. Between Mt = 0.6 and near sonic speed, the negative 
peak is dominant. The absolute value of the negative peak varies as a function of tip Mach 
number according to exp(8.94Mt2) f or this particular configuration in the range 
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Mt = 0.4 to 1.1. Therefore, both features (a) and (b) of the blade slap are exhibited by the 
thickness noise. 

Figure 4 shows the theoretical variation of the acoustic pressure signature with the 
observer elevation. The observer distance is 50 m from the center of rotation of the 
hovering rotor system. The tip Mach number is kept fixed at Mt = 0.9. The direction- 
ality of the signal in the plane of rotation and the reduction in the impulsiveness of the 
signature at higher elevation is observed in this figure. Feature (c) of high-speed blade 
slap is, therefore, displayed by the thickness noise. 

Figure 5 shows that it is the region near the tip of the rotor that generates most of 
the noise. The cut-out of the blade system of figures 3 and 4 is increased from 14 per- 
cent to 84 percent. Comparing this figure with figure 3(f), one can see that the pressure 
signature has not changed significantly either in shape or level. 

Figure 6 shows the theoretical effect of change in the thickness distribution on the 
acoustic pressure signature. Note that in this figure, the rotor system is different from 
previous figures and a steady forward speed is also included. It is seen that the changes 
in the pressure signatures are significant and should be considered in designing a low- 
noise profile for the region near the blade tips. From equation (32), it may be shown that 
the acoustic pressure for the same section type (e.g., NACA four-digit airfoil or super- 
critical airfoil) is proportional to the thickness ratio. Although the supercritical airfoil 
section under the assumed conditions generates a higher noise level, one may use blades 
of smaller thickness ratio, as compared with other types, and obtain good aerodynamic 
characteristics as well as low noise level. 

Figure 7 shows comparison of theoretical and experimental pressure signatures for 
the rotor system of figure 6 with an NACA four-digit airfoil section. The theoretical 
pressure signature is due to thickness alone but the agreement, particularly at higher for- 
ward speed, is very good. The most probable source of discrepancy at lower speeds is 
the neglect of the pressure sources on the blade surfaces of the rotor. 

Since thickness noise does indeed display all the observed features of high-speed 
blade slap of helicopters, including the correct level of acoustic pressure, the thickness 
noise is proposed as the mechanism of the slap phenomenon. The theory and the numeri- 
cal examples suggest several methods of controlling this noise: 

(1) Reduce the tip speed of the rotor as much as possible (see fig. 3) 

(2) Modify the tip region by 

(a) Reducing the thickness ratio; the acoustic pressure is directly proportional 
to thickness ratio (see eq. (32)) 

(b) Changing the thickness distribution of the airfoil section (see fig. 6) 

(c) Altering the planform 
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The alteration of the planform is not included in the computer program presented in ref- 
erence 14. However, its effect on the thickness noise can be suspected by the changes in 
the C-surface it produces for different observer times. This effect may be studied 
numerically. 

CONCLUDING REMARKS 

Several expressions for the determination of the acoustic pressure signature of 
bodies in motion are presented herein. Although all these expressions are of theoretical 
value, in practical situations, one form, consisting of an observer time derivative and in- 
tegrals over the curve of intersection of a collapsing sphere and the body, was found to be 
the most useful for numerical work. No assumptions regarding the compactness of the 
sources or the location of the observer were made. An expression for the calculation of 
the acoustic pressure signature of rotating blades was derived. Using this expression, 
some thickness noise calculations were presented which, after comparison with experi- 
mental results, indicated that the thickness noise should be suspected as the cause of the 
high-speed blade slap of helicopter rotors. Further experiments are needed to verify 
this result. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, Va. 23665 
October 31, 1975 
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APPENDIX 

MATHEMATICAL DERIVATIONS AND NOT ES 

Embedding Procedure 

As mentioned in the Introduction, to use the Green’s function for the unbounded 
space, the original problem, restricted to the domain outside of the moving body, is em- 
bedded into a class of problems defined in the entire unbounded space. The merits of this 
technique will be discussed shortly. The procedure will be illustrated by an example 
using an ordinary differential equation. 

Consider the differential equation 

y" - y = f(x) 

with boundary conditions 

344 = Ya 

Y -0 as x-w 

This problem can be solved by finding the solutions of the following equations: 

with boundary conditions (A21 

yl(4 = 0 

y1 -0 as x co 

(Al) 

Y’i - Y1 = f(X) 

y$ - y2 = 0 

with boundary conditions 

y2(4 = Ya (A3) 

y2 -0 as x-m 
J 

The solution to the original problem is then y = yl + y2 due to linearity of equations (Al). 
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The Green’s function for equations (A2) is (ref. 15) 

G(x,<) = es-t sinh (a - x) H(5-x) + sinh (a - kj) eaBx H(x-5) 

where H(x) is the Heaviside function defined by 

H(x) = 

The solution for y is then the following: 

Y(X) = (G(x,5),f(5)) + y2M 

s 

03 
E G(x,t) f(t) d5 + ~~(4 

a 

(x ’ 1) 

> lx < 0) 

X 
= es-x 

s 
sinh (a - 5) f(5) d,$ + sinh (a - x) * ea-5 f(5) d5 + ya eawx 

a s X 

The solution of equations (A3) which is 

y2 = ya eaax 

(A41 

645) 

(A61 

has been utilized in equation (A5). 

For use in the upcoming discussion the following relation is obtained by evaluating 
the derivative of the solution of y(x) in equation (A5) at x = a: 

Ya + YH = - s O” earn5 f(t) d5 
a 

where ya = y’(a). Now consider the following differential equation: 

-,,I - 7 = h(x) 

with boundary conditions 

?- 0 as 1x1 - 00 

(A7) 
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The Green’s function for this problem is 

?i(x,() = -$ex-t H(t-x) + eWx+t H(x-<)I 

The solution of equation (A8) is, therefore, 

y(x) = ‘&,5),h(5)) 

1 -x x = --e 
s 

e5 h(t) d5 - i ex s 
co ,-5 

2 
h(5) d5 

-CCl X 
(A91 

Let y(x) be the solution of equations (Al) corresponding to a given function f(x) 
satisfying the condition f(x) - 0 as x - 00. The function y(x) = H(x-a) y(x) certainly 

satisfies the boundary conditions of the equations (A8). What is the corresponding source 

function h(x) ? This function turns out to be a generalized function. It is obtained as 
follows: 

y’(x) = H(x-a) y’(x) + H’(x-a) y(x) 

= H(x-a) y’(x) + 6(x-a) y(x) 

= H(x-a) Y’(X) + 6(x-a) ya 

y”(x) = H(x-a) y”(x) + 6(x-a) y’(X) + 6’(x-a) ya 

= H(x-a) y”(x) + 6(x-a) ya + 6’(x-a) ya 

y”(x) - y(x) = H(x-a) [y”(x) - y(x,] + 6(x-a) ya +. s’(x-a) ya 

= H(x-a) f(x) + 6(x-a) y& + 6’(x-a) ya 

where ‘5(x-a) is the Dirac delta function. And, thus, the function h(x) is given by 

h(x) = H(x-a) f(x) + 6(x-a) ya + 6’(x-a) ya (AlO) 
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The function h(x) is not determined completely since ya is known but y& is not given 
as seen from equations (Al). Assume that y; is either measured by an experiment or 
is otherwise known It will be calculated shortly. Note that the domain of the definition 
of h(x) is the entire unbounded real line. What has been achieved is that the problem 
described by equations (Al) may be viewed as a special case of the class of problems de- 
scribed by equations (A8). This technique which extends the domain of the definition of a 
differential equation will be called the embedding procedure. It is clear that if the Green’s 
function for the problem with the larger domain is known, then the new problem may be 
solved assuming that the appropriate additional boundary conditions, such as yg in equa- 
tion (AlO), are known. Since in many problems, particularly those involving partial dif- 
ferential equations, it is hard to find the Green’s function, the embedding procedure ex- 
tends the usefulness of the available Green’s functions. 

To convince the reader that one obtains the. same solution of equation (A5) for the 
problem of equations (Al), the source function h(x) in equation (AlO) is substituted in . 
equation (A5). Some elementary properties of the generalized function theory (ref. 16, 
pp. l-25) will be used here. One obtains 

H(x-a) Y(X) = f(x) 

= (&+&h(t)) 

= (&L),H&a) f(5) + %5-a) Y: + 6’(5-a) ya) 

= ‘%,5),WW f(t)) + YH %A - ya f$v) 

et f(t) d< + ex s 
O” em5 f(t) d< 

X 1 
‘a i ‘L ,$-a H(x-a) + ‘a ; ‘k e-x+a H(x-a) (Al 1) 

Since one is interested in the value of y when x is in [a,m), from equations (Al) the 
following is obtained: 

e5 f(s) d.$ + ex 
s 

O” em5 f(5) d< 
X 1 + ‘a - ‘a 

2 
e -x+a (AN 
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Letting x = a, precisely the same relation as equation (A7) is obtained. This indicates 
that given ya, one cannot choose yg arbitrarily, but it is obtained uniquely in the pro- 
cess of solving the problem. The relation between the boundary conditions, equation (A7), 
will be called the compatibility condition. Substituting yg in terms of ya from equa- 
tion (A7) in equation (A12), one obtains the same solution as equation (A5). 

Looking back, it is seen that the solution of the problem described by equations (Al) 
with restricted domain was obtained by first embedding the problem in the class of prob- 
lems described by equations (A8) with unbounded domain. This provided the inhomogene- 
ous source term which is the generalized function h(x) involving conditions at the point 
x = a not entirely supplied by the original problem, equations (Al). However, the method 
eventually led to the compatibility condition (A7) which yielded the unique solution to 
equations (Al). 

For the Ffowcs Williams-Hawkings (FW-H) equation, the compatibility condition is 
in fact an integral equation in terms of the surface pressure of the body which is usually 
difficult to solve. One may then use experimentally obtained surface pressure distribu- 
tions. The usefulness of the method presented here should not be overlooked as it pro- 
vides a systematic and neat method of attack which may work. 

Derivation of Ffowcs Williams -Hawkings Equation by Embedding Procedure 

Let the surface of the moving body be given by the function f(F,r) = 0. The func- 
tion f(F,T) is defined to be positive outside and negative inside the body, Following the 
procedure of the preceding section, all the flow parameters will be multiplied by the func- 
tion H[f(F,T)], where H(f) is the Heaviside function, in order to embed the problem of 
the external flow and acoustics of this body into the class of problems valid in the entire 
unbounded space. 

It is required on physical grounds that all flow parameters vanish at infinity. For 
this reason, the quantity p - p. where p. is the density of the undisturbed medium, 
will be used as the density parameter, rather than p itself. However, if p is multi- 
plied by a quantity that vanishes at infinity, such as the flow velocity, it is kept unchanged. 
Outside the body, the continuity and momentum equations hold true. Using summation 
convention on subscripts i and j, these equations are 

Continuity equation: 

&cp -Po) + -&(pUi) = 0 
i 

(A13) 
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Momentum equation: 

$$PUi) + +(Pij + PUiUj) = 0 
j 

(A141 

where ui is the fluid velocity, T is the time, and Pij is the compressive stress ten- 
sor. The parameter p - p. will be designated z. The frame of reference r is fixed 
with respect to the undisturbed ,medium. 

The continuity equation, valid in the entire unbounded space, is 

(Al5) 

Note that 

= 6(f) $$ui - vi) 

= 6(f) IVfI(Un - Vn) = 0 L416) 

where vi is the velocity of the body and the no-penetration condition un = vn is used 
on the body. The subscript n denotes the component normal to the body. Using the pre- 
ceding result, equation (A15) will be written in the following form: 

$[F H(f)] + &[Pui H(f)] = Poui s(f) g 

(A171 
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Using the above technique, the momentum equation can be written as: 

&bUi H(fJI + $-[(Pij + puiuj) H(fj] = Pij g 

In this relation, the result of equation (A16) has been applied. Taking the time deriva- 
tive of both sides of equation (A17) and the space derivative with respect to yi of both 
sides of equation (A18) and then subtracting the latter from the former, one obtains 

a2 - ij H(f) [ 1 a2 
aT2 

- w[(pij + Puiuj) H(fJ-J = &[Pov,JofI 6(f)] - T& Pij $ 6(f) 
J [ 1 yj 6419) 

Now add and subtract the term c2 2 - a [P H(f)l/ayi2 on the left side of equation (A19) and 
rearrange the term involving Pij to get 

a2 - i3 H(f) 
aT2 [ 1 - c2 -f$[C H(f)] = &[PovnIVfI a(f)] - $-pij T$ b(ij] 

J 

a2 + - 2- 
aYiaYj 

+ PUiUj - C p 6ij ) 1 H(f) (-420) 

Here c is the speed of sound in the undisturbed medium. The quantity 

Tij = Pij + PUiUj - C2P 6ij L421) 

is called the Lighthill stress tensor, well known in jet noise theory. Let p = c2i;. This 
quantity is the acoustic pressure in the region not too close to the body. It is the pertur- 
bation pressure in linear theory even close to the body itself. Using this notation, equa- 
tion (A20) will be written as 

- Z- Pa * ayi[ 9 3 ‘(ii + &pij H(fj (A23 
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The above equation was derived first by Ffowcs Williams and Hawkings (ref. 9). 
They based their derivation of the generalized mass continuity equation (eq. (A17)) and 
momentum equation (eq. (Ai8)) on the study of mass and momentum flow through a con- 
trol volume, respectively, The body is represented by a surface of discontinuity in the 
unbounded medium. Inside the body, the fluid is at rest with the conditions of the undis- 
turbed medium. The method presented in this appendix was known to Ffowcs Williams 
and Hawkings and the technique, witkout using the terminology of embedding, was sketched 
in their original work (ref. 9). Note that the FW-H equation is valid even if shock discon- 
tinuities are present in the flow field. This is because of the fact that this equation is 
based on conservation of mass and momentum which should hold in the presence of shock 
waves. 

It should be emphasized that as in the case of ordinary differential equations, the 
source terms in equation (A22) can not all be specified arbitrarily. For example, the sur- 
face pressure on the body should be specified in such a way that if the observer is located 
on the surface of the body at the time t, the calculated acoustic pressure p should be 
the same as the local surface pressure at the time. This is the compatibility condition. 

When obtaining the solution of equation (A22), the function which is solved for will 
be written as p(x’,t) rather than p(x’,t) H(f). The latter function is actually what the 
solution represents. Mathematically, the solution is valid anywhere including inside the 
body for which p(x‘,t) H(f) = 0. This fact can be used to advantage in some problems. 
When the formal solution of equation (A22) is regarded as an integral equation in terms of 
the body surface pressure, one can show that H(f) = l/2 on the surface of the body. 

Solution of Wave Equation With Generalized Functions 

as Source Terms 

Let f(F,r) = 0 be the equation of the surface of a moving body. The fu :tion 
f(y,T) is defined such that its gradient Vf points outside the body, The sob ion of the 
inhomogeneous wave equation 

df! - v2r,b = Q(~‘,T) lvfj 6(f) 
c2 a9 

(A23) 

will be considered first. Next the solutions of the wave equation with the following source 
terms 
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will be given. In the preceding equation, the functions Q@,T) and Qi(7,~) are given 
piecewise smooth functions on the body surface. Note that the choice of the preceding 
source terms corresponds to those of FW-H equation (A22). 

The Green’s function for the solution of the wave equation in the unbounded space is 
6(g)/4ar where g = T - t + r/c, T is the source time, t is the observer time, 
r= lx’ - 71 and Z and 5; are the observer and source locations respectively. When 
z and t are fixed and the source time 7 varies from -m to t the surface g = 0 
is a sphere with center at x’ whose radius collapses at the speed of sound. The solution 
of the equation (A23) is thus 

4n #(x’,Q = 1 Q(;7T) lVf[ 6(f) 6(g) d? dr (A24) 

The volume integral extends over the unbounded three-dimensional space and the time in- 
tegral is over the interval --oo < T 2 t. 

The integrals involving a product of two delta functions are studied’in the literature 
of generalized functions (ref. 16, pp. 209-247). The result is an integral over the subspace 
where f = 0 and g = 0. To get this integral, the variables of integration in the preced- 
ing equation should be transformed to a coordinate system which has f and g as new 
variables. The details are outlined in reference 17. One writes: 

df dg dyl 
dy = a(f,d /a(Y2,Y3) 

df dg dyl 
= (Vf x vg) . $ 

= c df dg dF 
lVf\ sin 8 

(A2 5) 

where gl is the unit vector along yl-axis and F is the curve of intersection of the sur- 
faces f = Constant and g = Constant. The angle 0 is between Vf and F (=x’ - 7). 
In the preceding equation one may use other combinations of axes to get the same final re- 
sult. Substituting equation (A25) in equation (A24) and integrating with respect to f and 
g, one obtains 

(A26) 
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Here, because of the products of delta functions in the integrand of equation (A24), l? is 
the curve of intersection of the surfaces f = 0 and g = 0. (See figs. 1 and Al.) The 
source times 71 and 72 correspond to the times when the sphere g = 0 enters and 
leaves the body, respectively. The condition 8 = 0 will be discussed separately later 

on. 

Another form of the solution of equation (A23) may be written by noting that the sub- 
space for which f = g = 0, keeping x’ and t fixed, is the surface 

F(F; x’,t) = f(r,t-5) = 0 

This equation is obtained by solving for T from g = 0 and then substituting in 

f (?,T) = 0. This surface, designated as C, is the locus of all the points on the surface 

f(?,T) = 0 whose signals arrive simultaneously at the observer location x’ and at the 
time t. To visualize this surface, consider a large sphere enclosing the body whose 
radius collapses at the speed of sound to radius zero at observer time t with the center 
at observer position i. As the sphere contracts, let the body trace its history in time. 
The surface generated by the curves of intersection of the sphere and the body is in fact 
the C-surface. Incidentally, these curves of intersection are the r-curves employed in 
the equation (A26). Note that for points on a I -curve, or a point lying on the C -surface, 
with coordinate F, the source time T is related to t by the relation T = t - 5 where 
r = [Z - j;l. In figure Al the situation is illustrated for the moving body f(r,~) = 0. The 
sphere and the body at the source time T are shown with dotted lines. Their intersec- 
tion, the r-curve corresponding to the time T, lies on the C-surface. This surface is 
formed by all the r-curves for --oo < 7 5 t. The X-surface is not necessarily simply 
connected. 

Now that the C-surface has been defined, use the relationship 6(F) 6(g) = s(f) 6(g) 
in the integrand of equation (A24). This follows from the fact that the subspace defined 
by f = 0 and g = 0 is the same as one defined by F = 0 and g = 0, once again keep- 
ing Z and t fixed. Equation (A24) may be written as 

4n @(x’,t) = s q IVfj 6(F) 6(g) dr d7 (~27) 

The domain of the volume integral is the unbounded three-dimensional space and that of 
the time integral is --co < T 2 t. The following result is employed to integrate the above: 
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dyl dy2 dF dg 
dy dT = a(F,d/a(Y3,7) 

= dyl dy2 dF dg 
aF/ay3 

= dyl dy2 dF dg 
N31VF1 

(A28) 

Here dZ is the element of the surface of F(F; x’,t) = 0 and G is the outward unit nor- 
mal to this surface. The symbol m,d/a(Y3, ‘) stands for Jacobian. 

The following expression is obtained from the relation 

F(F; x’,t) = f&t-$) = [f(y’,T)lret = 0 

where the subscript ret stands for retarded time: 

/vFl = [,Vf, (1 + Mn2 - 2M, cos 0)““l 
ret 

In this expression, Mn = vn/c, vn = -(af/aT)/lvfl is the normal velocity of the body, and 
Q is the angle between the outward normal to the body and the vector in the radiation 
direction 7. The symbol A will be used in this report as 

A = (1 + Mn2 - 2M, cos 0) l/2 
(AN 

When equation (A28) is substituted in equation (A27) and the result integrated with respect 
to F and g, one obtains a new form of the solution for equation (A23). This form is 

(A30) 
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(A4 1) 

The summation convention on i is used in equation (A41). Derivation of this identity is 
3 

not trivial. It is obtained by writing dZ = c Ni dFi where ?? is the unit normal vec- 
i=l 

tor to the C-surface. The symbol dFi is defined as the element of the area of the coor- 
dinate plane whose normal is parallel to yi-axis, that is, drl = dy2 dy3, etc. Substituting 
this relation in equation (A39) and then using the result on the left side of.equation (A41), 
one obtains 

Ssrn T(F) 6’(F) d? = S+m i ‘l:Fy 6’(F) dF d?i 
-03 -C-J i=l 

where a 
aF -- I 

indicates that while taking the derivative a/aF, the coordinates in the plane 
yi 

in which d?i is defined must be kept fixed. For example, & 
I 

means that the coor- 
5 

dinates y2 and y3 are kept fixed. It may be shown that 

(i = 1, 2, 3; no sum on i) 

and also dFi/Ni = dC (i = 1, 2, 3; no sum on i). When these two results are used in 
equation (A42) and the latter integrated with respect to F, the result is equation (A41). 

The last integral of equation (A37), by the use of the identity in equation (A41), 
yields 

(A43) 
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Equation (A34) can thus be written as 

477 Gl(x’A = $ s=, f(z)ret dJ!l 

Here the relation Ni = (aF/ayi)/(VF( is used. 

When precisely the same technique is applied to equation (A36), one obtains 

4n $z(Z,t) = s F=O 

@44) 

644 5) 

where Qj = (IVf IQj) ret, 

The preceding equation will be written in yet another form which is very useful in 
applications. First, note that 

a Qi _ 
r) 

Qr 1 aQr -- - -- --- 
axi r ,2 cr at 

and 

aF - -5 aF 
axi Cat 

where Qr = Qiri When these are substituted in equation (A45), the following is obtained: 

4a $2(z,t) = - s 
QrdC 1 - - - - 

F=() r2 ) VFI ’ 

Now compare the second integral on the right side of this equation with the integral in 
equation (A44). Since Q is arbitrary in equation (A44), one may write 
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Note that lVF[ = ((VflA),,t. When the above relation is substituted in the equation pre- 
ceding it, the new form of solution for equation (A36) becomes 

4n &-(z,t) = QrdZ la Qr dc - 
s 

----- 
s 

-- 
F=O r2 IvF[ c at F=O r IVF\ 

(A46) 

where Qr = Qiri. 

The importance of the last result lies in the fact that now only one derivative, that 
is, the time derivative, appears in the solution which may be performed numerically for 
a fixed observer position. This is considerably simpler than using equation (A36) in 
which the space derivatives must be calculated numerically at a fixed observer time. 

Equation (A46) may also be written as 

dFdT++ 
T2 

s s r --& dr (A47) 
71 

To get this from equation (A46), compare equation (A26) with equation (A30). It can also 
be obtained by using equation (A68). 

It is seen that one may write the solution of the wave equations considered in this 
section of the appendix in many different forms. The solution of the FW-H equation sat- 
isfying the criteria proposed in this report is based on equations (A33) and (A47). 

Discussion of Singularities of the Solution of Wave Equation 

One disturbing feature of the different forms of the solution of the wave equation is 
the appearance of singularities such as A = 0 in equation (A34). These singularities 
limit the applicability of the solution. It may appear that such singularities are genuine. 
In this section, it will be shown that, provided that the right variables are chosen in the 
solution of equation (A23), the singularities are integrable. In the case of the following 
expressions or other equivalent forms: 
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I2 = & SFzO f(yret dzz (A48b) 

it is not permissible to take the derivatives inside the integral without properinterpreta- 
tion. The order of the singularity in the integrand increases when the derivatives are 
taken inside. One should then use Hadamard’s method of selecting the finite part of a 
divergent integral or its modern equivalent form in generalized function theory. Due to 
multidimensionality of the integrals, the use of such a technique is an unnecessary com- 
plication which could be avoided by applying numerical differentiation with respect to the 
observer time. The ensuing discussion will, therefore, be confined to the study of the 
singularities of the following integral: 

’ = IF=, $?)ret dC (A49) 

In this section, it will be shown that the singularities of equation (A49) are integrable. 

Since in the following discussion x’ and t are kept fixed, the dependence on these 
variables is suppressed in the notation and the integrand will be written as 
T(r) = i&y’; x’,t)/r. Assume that T(y’) is bounded on the X-surface. Thus the following 
equivalent form of equation (A49) will be considered for the study of the singularities: 

I= s F=O 
(A50) 

since VF = IVf(R ret and Q = (Vf IQ ret. The set of points on the C-surface where 
[VFI = 0 is called the critical points of the surface. At these points, provided that f = 0 
has no critical points, Mn = 1 and 0 = 0. This means that the surfaces of f = 0 and 
g = 0 are tangent, and normal body velocity is equal to the speed of sound c. In the fol- 
lowing discussion, it is assumed that not all the second partial derivatives with respect to 
variables yi are zero at critical points of F(T; x’,t) = 0. The following three cases are 
distinguished. 

Case (i). - If the sphere g = 0 is tangent to the body for an extended period of time, 
when the body is on one side of the sphere, the C-surface corresponding to this period de- 
generates into a curve in space. Since this curve has no surface content, the integral of 
equation (A50) is zero. This curve itself can become an isolated point in space if g = 0 
and f = 0 become tangent and immediately separate. Again one obtains I = 0 in 
equation (A 50). 
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Case (ii). - There may be isolated points on the E -surface where IVFl = 0. This 
situation can occur, for example, at points where the sphere g = 0 enters or leaves the 
body at the speed of sound. Such points may also appear when g = 0 is in the process 
of crossing the body. To visualize this latter condition, consider a finite wing with a rec- 
tangular planform and a symmetric section moving in a straight path with variable speed. 
(See-fig. A2(a).) Let the observer be in the plane of symmetry of the wing as shown in 
figure A2(b). If the body accelerates to sonic speed, and subsequently decelerates with- 
out spending some time at sonic speed, the X-surface corresponding to t = TO + io/c 

has a singularity at point B. This surface is shown in figure A3. 

This type of singularity appears most often in calculations for rotating bodies. In 
such a case, the tangent plane to the C-surface at the point B is not defined. In fact, in 
the vicinity of B, the Z-surface looks like a cone since it can be represented by the func- 

tion l?(r) = Fijyiyj 
Fij = a2F/ayiayj) B. 
one has 

= 0 in a coordinate system with origin at the point B where 
For a small patch of area near B on C-surface, designated as D, 

for some F in region D. Thus, consider the following integral near point B: 

I?= dc 
s D h-l 

(A50 

Let the yly2-plane coincide with the tangent plane to the sphere g = 0 when it is 
at the point B. In this plane, set a polar coordinate (R,cp) such that 

y1 = R cos cp (A52a) 

y2 = R sin cp 

Then equation (A51) becomes 

I’ = 
s 

RdRdp 

D IaF/aYgl 

(A52b) 

L453) 
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and from F(F) = Fijyiyj = 0, one obtains 

a@ - = Fl3yl + F23y2 + F33y3 
ay3 

Solving for y3 from the equation of the surface near B, and substituting in equa- 
tion (A54), and finally using the relations of equations (A52), the following result is 
obtained: 

Ro I’ = 
s s 

dq dR 
0 DV cos2 cp + B sin 2~ + 2C sin2 cp 

where 

A= 

B= 

c= 

The domain of 

(A54) 

(A55) 
” JDq i(A + C) + (A - C) cos 2~ + B sin 2~ 

( F?3 - FllF33)/2 

(F13F23 - F12F33)/2 

cFz3 - F22F33)/2 

V, denoted by Dq, is the set of values of q which makes the denomina- 

tor in the integrand of equation (A55) real. This domain is not necessarily 27r. Even 
when the denominator in equation (A55) is zero, there is not a genuine singularity since it 
behaves as (b-a where ‘p0 is the value of cp which makes the denominator zero. 
If the region D is taken in such a way that its projection in the yiy2-plane lies in a circle 
of radius Ro, one obtains I’ m Ro. Therefore, by taking Ro small enough, one can 
neglect a patch of area near the type of singularity discussed here without introducing 
large errors in calculations. 

Case (iii).- If in the processes of crossing the body, the sphere g = 0 becomes tan- 
gent to the body at a point whose normal velocity is sonic and remains sonic for extended 
periods of time, the C-surface intersects itself along a curve. This situation is uncom- 
mon for rotating bodies. Let the speed vary as shown in figure A4, and using the wing of 
figure A2, let the sphere be tangent to the wing at the point B when T = 7oa The Z- 
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surface is shown in figure A5. The structure of this surface near point B is presented 
in figure A6. 

Again, a new F-frame with origin at point B will be introduced with the ylyz- 
plane coinciding with the tangent plane to the sphere g = 0 when it is at point B. This 
plane is tangent to the F-curves which cross each other passing through point B. The 

slopes Gil and 132 of the tangents to F-curves in yly2-plane are given by the solution 
of the equation 

F22fi2 + 2F12m + Fll = 0 (A56) 

where 

a2F 
Fij = - aYiaYj 

B 

The analysis of case (ii) can be applied on that part of the C-surface where y6 < 0. (See 
fig. A6.) This shows that, for this region of the surface, I’ exists and can be made arbi- 
trarily small if the region D is taken as small. 

For the intersecting part of the C-surface in region y2 > 0, one can set up a new 
r-frame at any point P on curve BC with the yly2-plane coinciding with the tangent 
plane to the sphere g = 0 at P. The normals to the two intersecting parts of the C - 
surface are defined and could be obtained by using equation (A56) with Fij evaluated at 

point P. One obtains the following relations on each intersecting part of C-surface, say, 
in A’BC near point P 

IvFl = 7 * vIvFII~ + O(yi2) (A57a) 

VIVFIlp = Ni vFilp (A 57b) 

where Fi = aF/ayi and Ni is the unit normal to A’BC. Using equations (A57), one 
can write 

b 
ss 

6 
I’ = lim 

dl-’ dy3 

+O 0 E d-+m3 
(A=) 
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/ where (Y and p are related to the second partial derivatives of F(y; Z,t) at point P 
and 6 > E is a small fixed parameter. The above integral exists and can be made as 
small as one wishes by taking the value of the integration limit, 6 small. This means 
that one may neglect a strip of surface along the intersecting part of the C-surface which 
includes the curve of intersection BC without producing large errors in calculation. 

Relation of C-Surface Solution to Other Forms 

of the Solution of Wave Equation 

The F-curves and the system of curves on the C-surface orthogonal to them, denoted 
by m-curves, form a grid on the C-surface. Except at points on this surface where 0 = 0, 
one has the relation 

dz=dl?dm (AW 

At points where 0 = 0, the r-curves or m-curves intersect themselves as shown in fig- 
ure A7. Figure A7(a) illustrates the case when g = 0 enters or leaves the body. Fig- 
ure A7(b) is for the condition 0 = 0 when the sphere g = 0 is in the process of crossing 
the body. The third case (fig. A7(c)) corresponds to figure A6, when the C-surface inter- 
sects itself. In any case, one may neglect a small patch of area near the points for which 
0 = 0, even when Mn = 1. 

In figure A8 a region of the C-surface, where 8 # 0 and Mn f 1, is shown. It is 
seen that 

dm = Cd7 
sin 5 

where g is b. the angle between Ni and the radiation direction ? 1. But 

and 

= ii - M,; 
A 

L460) 

Ml) 
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In the last step of equation (A67), g is substituted from equation (A61). Also since 
? = ? X ii/sin 8, it may be shown that 

= (VnF - Vrfi)$ 

= (M$ - M$i)F L468) 

where vn = v’ . 5, Vr = v’ . F, and Mr = vr/c. Here equation (A64) is used to give 

From equations (A65), (A67), and (A68), the relation between dC and dS is ob- 
tained which is 

dS = (1 - M,I y (A69) 

For use in different forms of the solution of the wave equation, equations (A64) and 
(A69) give 

dC = c dr dT = dS 
A sin 0 (1 - M,/ 

(A76) 

It is seen that when Mr = 1, one gets a singularity in the solution in the form of an 
integral over the body surface S. This condition occurs when 171 2 c. When this hap- 
pens, the F-curves corresponding to the same observer time t intersect one another or 
become tangent. These curves may cover a portion of the surface S more than once. 
For example, if the body is moving at steady rectilinear supersonic speed, then only that 
portion of the body which is within the forward Mach cone from the observer will be cov- 
ered twice by the F-curves. Note that only for the solution involving an integral over the 
body surface, it is assumed that the body be rigid. The other forms of the solution apply 
for general surfaces which deform while in motion. 
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Figure l.- Formation of a r-curve by the intersection of the collapsing sphere 
g = 0 and the body (a helicopter rotor). 

Figure 2. - Coordinate frames used in determination of the acoustic field 
of rotors and propellers. 
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Figure 7. - Comparison with experiments. 
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F(y; g, t) = f(F, t - r/c) = 0 

g = 7 - t + r/c = 0 (Collapsing sphere) 

f(y, T) = 0 (Body in motion) 

Figure Al .- The collapsing sphere g = 0 in the process of intersecting the 
moving body f(F,T) = 0 and forming the r-curve. The C-surface is the 
surface generated by all r-curves as the source time 7 varies from 
--OO to t for fixed observer position x’ and time t. 
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Wing velocity B 

C -- - 
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I 
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0 
TO 

Time, T 

(a) Wing velocity. (b) Wing position at time ~0. 

Figure A2. - Example of a condition causing singularity in the solution 
of the wave equation. 

r 
g=i- 

0 
-t+ +o 

\ 
r -curve 

F(;j; z, p. + IO/c) = 0 (C -surface) 

Figure A3. - The X-surface corresponding to the observer time 70 + ro/c 

of the wing of figure A2 some of the r-curves are also shown. 
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Wing velocity 

I 
I 
I 

rO Time, T 

Figure A4.- Time history of the motion of the wing of figure A2 causing 
the C-surface to intersect itself. 

Observer 

L F(yt; z, 7 o + ro/ c) = 0 (C -surface) 

Figure A5. - C -surface of the wing of figure A2 corresponding to the observer time 
r. + T~/c. Some of the r-curves are also shown. 
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~ r -curves 

Figure A6. - Structure of the C -surface near point B of figure A5. 

m-curves m-curves m-curves 

(a) Point A of figure A3. (b) Point B of figure A3. (c) Point B of figure A5. 

Figure A7. - The r - and m -curves in various situations causing singularities 
in (r,~)-formulation of the solution of the wave equation. 
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Figure A8.- 

m-curve 

l? -curves 
Diagram for determination of the relation between the 

and (I-‘, T) -formulations. AC = c d7; AB = dm. 
C-surface 

m-curve 

C -surface 
. Figure A9.- Diagram for determination of the relation between the elements 

of the areas of the C-surface and the body surface S. (The unit vectors 
? and iii are tangent to r-curve and m-curve, respectively.) 
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